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Abstract

In this paper, a two warehouses inventory model with stock-dependent demand has been studied. In
case there is limited capacity of the owned warehouse (OW), another warehouse is used named rented warehouse
(RW) for large ordered quantity. The deterioration rate of inventory items is different in both the warehouses. In
the case of OW, we allow for shortages and consider the time dependent backlogging rate. To achieve the
optimal ordered quantity and the optimal interval for the total inventory cost, a solution procedure is established
and it concludes the developed model with further extended environments.
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Introduction

Today’s, companies have identified that in addition to the maximizing profit; customer satisfaction
plays a vital role for acquiring and maintaining a victorious position in the competitive market. Some products/
items such as milk, bread, fish, blood, vegetables, fruits, medicines and radioactive chemicals have finite shelf
life and start to deteriorate once they are replenished.  During the last so many year mathematical ideas have
been widely used in various fields mostly for the controlling and keeping inventory. Finding the minimum total
inventory cost associated with the inventory system one must keep in mind when to order and how much to
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order or how much to manufacture. First Ghare and Schrader1 gave an idea of an inventory model with an
exponentially decaying inventory and also presented the EOQ inventory model with fixed deterioration rate and
without shortages. Covert and Philip2 extended the Ghare and Schrader’s model and discussed an EOQ model
with two-parameter Weibull distribution deterioration rate. Misra3 presented an inventory model under two
type of deterioration rate variable and constant both. Agarwal4, Dave and Patel5, Dave7, Aggarwal and Jaggi8,
Wee9, Dye and Ouyang13 etc., authors discussed some important inventory models for deteriorating items at a
constant deteriorate rate. In these above mentioned models, the demand and deterioration rate was assumed to
be constant. The relationship between time and deterioration rate is a general phenomena considered in the
inventory models.  Later, some models developed including variable deteriorating rate by Wee10, Bhunia and
Maiti12, Mana and Chaudhary14, Liao16, Sarkar21. The idea of stock dependent demand are assumed by some
authors, such as Sharma6, Goswami and Choudhary11, Singh and Malik19, Sharma et al.24, Sarkar and Sarkar22,
Gupta et al.25, Singh et al.26,  Vashisth et al.28, Malik et al.30 and Kumar et al.29 developed the inventory models
with stock dependent demand.

Today’s daily used items such as milk, bread, vegetables, fruits etc, such items maintain their freshness
for some time they not deteriorated as soon as they obtained by the retailer/seller. During their fresh time of
items maintained their originality; Ouyang et al.15 named this phenomenon “non-instantaneous deterioration”
and prepared a new model with non-instantaneous deteriorating items with the permissible delay in payments.
Singh and Malik18 considered an Optimal ordering policy inventory model with linear deterioration and
exponential demand under the two storage capacities. Sana17 examined optimal selling price and lot size inventory
model with time varying deterioration under the partial backlogging. Sett et al.20 investigated an inventory
model of two-warehouse considering quadratic increasing demand and time varying deterioration. Sarkar and
Sarkar22 developed an economic quantity model with probabilistic deterioration rate in the production system.
Sarkar et al.27 presented an inventory model with quality improvement and backorder price discount under
controllable lead time. Vashisth et al.31 presented an inventory model with multivariate demand for non-
instantaneous decaying products under the trade credit policy.

Notations and Assumptions
For the proposed inventory model, the following notations used in this paper:
D(t)=d1+d2I(t) : the demand rate per unit time,
W1 : the capacity of RW
W2 : the capacity of OW
Co : the ordering cost per order,
h1 : the holding cost in RW per unit time per unit,
h2 : the holding cost in OW per unit time per unit,
k : the deteriorating cost in both RW and OW per unit time per unit,
T : the total length of the ordering cycle
TIC(t2, T) : the total inventory cost per unit time of the proposed system.

The following assumptions are used for proposed model:

1. The deterioration rate  are 1(t) and 2(t) at any time t, ,
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1. The capacity of owned warehouse and rented warehouses are W1 and W2  respectively.

2. Shortages are allowed and backlogging rate is time proportional, denoted as ,
1

1)(
x

xB


 where  is

positive constant and x is the waiting time for the subsequently refill.

Mathematical Model :
For the developed model, assume that during the time-interval [0, t1], no deterioration occurs in the

products, during [t1, t1+t2] deterioration and demand are the factors for decreasing the inventory levels. In RW
system, Ir1 and Ir2 is the inventory levels in the intervals [0, t1] and [t1, t1+t2] respectively. During [t1+t2, t1+t2+t3]
in the OW system inventory level decreases up to zero level due to demand and deterioration. In the time
interval [t1+t2+t3, T] shortages are occurs and unsatisfied demands are backlogged.   During the time interval
[0, T], the following inventory levels are represented by the differential equations:
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Equations (1-6) holding with the following boundary conditions  ,)0( 11 WI r    ,0)( 212  ttI r

 0)(,0)(,)( 3213213212  tttItttIWtI noo   respectively. Using the above boundary
conditions the solutions of the equations (1-6) are as follows:
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Due to continuity of Inventory levels in this developed model; for RW at t=t1, from Equations (7) and (8), we

have     1211 tItI rr   (13)
Solving Equation (13), we get
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Also for OW at t=t1+t2, from Equations (10) and (11), we have        213212 ttIttI oo    (15)
Solving Equation (15), we get
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The optimum inventory cost per cycle contains the following terms:
The ordering cost per cycle is  OC= Co    (17)
The holding cost for RW per cycle is given by
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The holding cost for OW per cycle is given by
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The deterioration cost for RW per cycle is given by
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The deterioration cost for OW per cycle is given by
     


21

1

321

21
)()()()( 3222

tt
t

ttt
tt ooOW dttItdttItkDC 

 
      

       

       























































 

















 























15
2

532

442

3
2

3

4
5

321
5

21
2

321
3

21
2
2

4
321

4
21

2
321

2
21

2

3
321

3
212

32121

2
2

1

ttttttttttd

tttttttttt
d

ttt
tt

ttttt

d
kd

 
      

       

       







































 















 















 







12432

632

22

4
321

4
21321

3
21

2
2

3
321

3
21321

2
21

2

2
321

2
21

32121

1

ttttttttttd

ttttttttttd

tttttttttt

v

 
 

         

       

       

















































































 









 











 




































 









 






























3212

212
3

21
3

2
3

321
3

21

2
321

2
21

23

2
2

2
2

3212

212
2

21
2

2
2

321
2

21
3

2
2

3212

212
2123

2

1
1log

3
1

9

6
1

3
1

2

1
1log

2
1

42
1

1
1log1

tttm
ttmttmttttt

tttttmtm

d

tttm
ttmttmttttttmd

tttm
ttmttmt

v

 (21)

A. K.  Malik, et al.,   JUSPS-B Vol. 29(10), (2017). 315



The shortage cost per cycle is given by
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The lost sales cost per cycle is given by
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Thus the optimum inventory cost (TIC) per cycle per unit time is given by

 
][1 LSSCDCDCHCHCOC

T
TIC OWRWOWRW   (24)

The cost function is highly non-linear. To minimize the total cost per unit time, the optimal values of t2  and T can
be obtained by solving the following system of equations simultaneously
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Solution Procedure :

Step 1. Set the value of the parameters in equation (24).
Step 2. Now using the equations (25) and (26) obtain t2* and T* and from the equation (24) obtain TIC*.
Step 3. Putting the value of t2* and T* in the system of equation (27) and check the optimality. If satisfied then
go to stop otherwise repeat the process from step 1 to 3.

Conclusions

In this paper we developed a two warehouses inventory model with the maximum life time. In actual
conditions, the maximum products/items deteriorate due to expiration of their maximum life time. Such type of
model with time varying deterioration function of the time with assuming non-instantaneous items has not yet
been proposed. This proposed model can be applied to the inventory system for stock-dependent demand. The
study of this paper developed for the optimal inventory cost with solution procedure. Further, for research
extension in this paper with variable holding cost, ramp type demand, quadratic demand, price and multi valued
demand, inflation, reliability and trade credit etc.
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