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Abstract

Economic production quantity models usually assume that the production is fixed and finite. However,
due to various random factors effecting the production, the production process becomes random. This paper
deals with the development and analysis of economic production quantity model in which the production is
random and follows a generalized Pareto distribution. The generalized Pareto distribution is capable of including
different types of production rates. Here it is further assumed that the lifetime of the commodity is random and
follows a two parameter Weibull distribution. The Weibull decay includes constant, increasing and decreasing
rates of deterioration. It is also assumed that the demand is dependent on selling price. Assuming that shortages
are allowed and fully backlogged the instantaneous state of on hand inventory is derived. With suitable cost
considerations the total cost function and profit rate function are obtained and minimized with respect to the
production uptime and downtime. The optimal production uptime, downtime, production quantity and selling
price are derived. A numerical illustration demonstrating the solution procedure of the model is presented. The
sensitivity analysis of the model revealed that the production and deteriorating distributions parameters have
significant influence on the optimal production schedule and production quantity. This model is extended to
the case of without shortages. This model also includes some of the earlier models as particular cases for
specific or limiting values of the parameters.

Key words : EPQ model, Generalized Pareto rate of production, Selling price dependent demand,
Random production, Weibull decay.

Subject Classification Code: 90 59- Operations Research

1  Introduction

In classical production inventory models it is customary to assume that the demand is constant. But,
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in many production systems the demand is a function of selling price. Recently much work has been reported
in literature regarding selling price dependent demand. In addition to demand another important factor of
production level inventory model or EPQ models for deteriorating items is a common phenomenon for scheduling
production systems.

Begum et al.2 and Tripathy et al.15 considered Weibull rate of deterioration. Srinivasa Rao et al.13

developed and analyzed an inventory model for deteriorating items with generalized Pareto decay. Srinivasa
Rao et al.14 considered the case of additive exponential lifetime. Roy et al.10  introduced an order level inventory
model for a deteriorating item, taking the demand rate to be dependent on the sale price of the item and
incorporating the concept of the special sale campaign by way of price of reduction is into the model. Madhavi
et al.7 developed an inventory model with the assumption that demand is a function of selling price, lifetime of
the item is random and follows two parameter exponential distribution and that the deteriorated items are kept
in the inventory for second sale. Inventory models for deteriorating items having multivariate demand functions
were studied by some authors. Chen et al.3 studied an inventory model with a multivariate demand function of
price and time. Khanra et al.4 studied models for deteriorating items having stock level and selling price
dependent demand rate. Urban et al.16 studied an inventory model in which demand is a function of price, time
and inventory level. Kousar Jaha Begum et al.5 developed an E.P.Q model with the assumptions that the life time
of commodity is random and follow a Generalized Pareto Distribution and is assumed that demand is a function
of both the time and selling price. Ajay Kumar Agarwal et al.1 studied an inventory model with variable demand
rate for deteriorating Items under Permissible Delay in Payments. Varsha Sharma et al.17 studied an inventory
model for deteriorating products having demand which is function of selling price. Maragatham et al.8 and
Raman Patel et al.9 developed an inventory model with time and price dependent demand.

In all these models it is assumed that the production is finite and constant rate. But in many practical
situations the production process is random due to various random factors such as availability of raw material,
manpower, power supply, breakdowns etc. Hence recently Sridevi et al.11, Srinivasa Rao et al.12 and Lakshmana
Rao et al.6 have developed production level inventory models with the assumption that the production process
is random and follows Weibull distribution. Very little work has been reported regarding EPQ models with
selling price dependent demand having Weibull rate of decay and generalized Pareto rate of production. Hence
in this paper we fill the gap in this area of research by developing and analyzing an EPQ model with generalized
Pareto rate of production and Weibull decay having selling price dependent demand. The generalized Pareto
rate of production includes constant and time dependent rates of productions as particular cases.

Using the differential equations the instantaneous state of inventory is derived. The total cost function
and profit rate function under suitable cost considerations assuming shortages which are fully backlogged are
derived. The optimal production uptime and downtime are obtained by minimizing the profit rate function and
optimal production quantity and optimal selling price are derived. The sensitivity analysis of the model is
included to study the changes in input variables and costs. This model is extended to the case of without
shortages.

2 Assumptions :
For developing the model the following assumptions are made:
i) The demand rate is selling price dependent demand. Say (ݏ)ߣ = ܽ − (1)                 ݏܾ

where ‘a’ and ‘b’ are constants and ‘s’ is selling price.
ii) The production is finite and follows a Generalized Pareto distribution. The instantaneous rate of production

is
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(ݐ)ܭ =
1

ߙ − ݐߛ
    ; 0 < ݐ <

ߙ
ߛ

  (2)

iii) Lead time is zero.
iv) Cycle length is T. It is known and fixed.
v) Shortages are allowed and fully backlogged.
vi) A deteriorated unit is lost.
vii) The lifetime of the item is random and follows a two parameter Weibull distribution with probability density

function

(ݐ)݂ = ߟݐߠ−1݁−ߟݐߟߠ        ; ߟ,ߠ > ݐ      ,0 > 0 
Therefore the instantaneous rate of deterioration is

ℎ(ݐ) = (ݐ)݂
(ݐ)ܨ−1

= ;       1−ߟݐߟߠ ,ߠ ߟ > ݐ      ,0 > 0 
                                                          (3)

The following notations are used for developing the model.
Q: Production quantity.
A: Setup cost.
C: Cost per unit.
h: Inventory holding cost per unit per unit time.
: Shortages cost per unit per unit time.

3 EPQ Model with Shortages:
Consider a production system in which the stock level is zero at time t = 0. The stock level increases

during the period (0, t1), due to production after fulfilling the demand and deterioration. The production stops

at time t1 when stock level reaches S. The inventory decreases gradually due to demand and deterioration in the

interval (t1, t2). At time t2 the inventory reaches zero and back orders accumulate during the period (t2, t3). At

time  the replenishment again starts and fulfils the backlog after satisfying the demand. During (t3, T) the
backorders are fulfilled and inventory level reaches zero at the end of the cycle T. The schematic diagram
representing the instantaneous state of inventory is given in Figure 1.

Fig 1: Schematic diagram representing the inventory level

Let I(t) be the inventory level of the system at time ‘t’ (0  t  T). The differential equations governing the
instantaneous state of I(t) over the cycle of length T are
݀
ݐ݀
(ݐ)ܫ + ℎ(ݐ)(ݐ)ܫ =

1
ߙ − ݐߛ

− (ܽ − ;     (ݏܾ                   0 ≤ ݐ ≤ (4)                                                   1ݐ



݀
ݐ݀
(ݐ)ܫ + ℎ(ݐ)(ݐ)ܫ = −(ܽ − ;              (ݏܾ 1ݐ                    ≤ ݐ ≤ (5)                                                   2ݐ

݀
ݐ݀ ܫ

(ݐ) = −(ܽ − ;                                   (ݏܾ 2ݐ                   ≤ ݐ ≤ (6)                                            3ݐ
݀
ݐ݀
(ݐ)ܫ = 1

ݐߛ−ߙ
− (ܽ − ;                         (ݏܾ 3ݐ                    ≤ ݐ ≤ ܶ                                                    (7)

where, h(t) is as given in equation (3), with the initial conditions I(0) = 0, (1ݐ)ܫ = (2ݐ)ܫ ,ܵ = 0  and I(T) = 0.

Substituting h(t) in equations (4) and (5) and solving the differential equations, the on hand inventory at time
' t ' is obtained as

(ݐ)ܫ = 1ݐ൫ߠ݁ܵ
ߟݐ−ߟ ൯ − ߟݐߠ−݁ ∫ ቀ 1

ݑߛ−ߙ
− (ܽ − 1ݐቁ(ݏܾ

ݐ ; ݑ݀ߟݑߠ݁      0 ≤ ݐ ≤ (8)                             1ݐ

(ݐ)ܫ = 1ݐ൫ߠ݁ܵ
൯ߟݐ−ߟ − (ܽ − ߟݐߠ−݁(ݏܾ ∫ ;                     ݑ݀ߟݑߠ݁ 1ݐ       ≤ ݐ ≤ 2ݐ

ݐ
1ݐ

  (9)

(ݐ)ܫ = (ܽ − 2ݐ)(ݏܾ − ;                                                              (ݐ 2ݐ       ≤ ݐ ≤ (10)  3ݐ

(ݐ)ܫ =  1
ߛ

log ቀܶߛ−ߙ
ݐߛ−ߙ

ቁ + (ܽ − ܶ)(ݏܾ − ;                                 (ݐ 3ݐ        ≤ ݐ ≤ ܶ  (11)

Production quantity Q in the cycle of length T is

ܳ =  
1
ߛ

log ቆ
ߙ) ߙ − (3ݐߛ

ߙ) − ߙ)(1ݐߛ − ቇ                                                                                                   (12)(ܶߛ

From equation (8) and using the initial condition I(0) = 0, we obtain the value of  'S' as

ܵ = 1ݐߠ−݁
ߟ
∫ ቀ 1

ݑߛ−ߙ
− (ܽ − 1ݐቁ(ݏܾ

0 (13)                                                                             ݑ݀ߟݑߠ݁

When t = t3 , then equations (10) and (11) become

(3ݐ)ܫ = (ܽ − 2ݐ)(ݏܾ − and                                                                                                  (14)   (3ݐ

(3ݐ) =  1
ߛ

log ቀ ܶߛ−ߙ
3ݐߛ−ߙ

ቁ + (ܽ − ܶ)(ݏܾ − respectively.                                                     (15)        (3ݐ

Equating the equations (14) and (15) and on simplification, one can get

2ݐ =  ܶ + 1
(ݏܾ−ܽ)ߛ

log ቀ ܶߛ−ߙ
3ݐߛ−ߙ

ቁ = ,3ݐ)ݔ (16)                                                                              (ݕܽݏ)   (ݏ

Let K(t1,t2,t3,s) be the total production cost per unit time. Since the total production cost is the sum of the set
up cost, cost of the units, the inventory holding cost. Hence the total production cost per unit time becomes

,1ݐ)ܭ 2ݐ , 3ݐ , (ݏ =  
ܣ
ܶ

+
ܥ
ܶߛ

log ቆ
ߙ) ߙ − (3ݐߛ

ߙ) − ߙ)(1ݐߛ −  ቇ(ܶߛ

             
 + 

ℎ
ܶ ቎න ቈܵ݁ߠ൫1ݐ

ߟݐ−ߟ ൯ − ߟݐߠ−݁ න ൬
1

ߙ − ݑߛ − (ܽ − ൰(ݏܾ
1ݐ

ݐ
቉ݑ݀ߟݑߠ݁

1ݐ

0

 ݐ݀

       
+ න ቈܵ݁ߠ൫1ݐ

ߟݐ−ߟ ൯ − (ܽ − ߟݐߠ−݁(ݏܾ න ݑ݀ߟݑߠ݁
ݐ

1ݐ

቉

2ݐ

1ݐ

 ቏ݐ݀
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+
ߨ
ܶ ቎(ܽ − (ݏܾ න(ݐ − ݐ݀ (2ݐ + (ܽ − (ݏܾ න(ݐ − ݐ݀(ܶ +

ܶ

3ݐ

3ݐ

2ݐ

1
ߛ න log ൬

ߙ − ݐߛ
ߙ − ݐ൰݀ܶߛ

ܶ

3ݐ

቏ 
   (17)

Let  P (t1, t2, t3, s) be the profit rate function. Since the profit rate function is the total revenue per unit minus total
production cost per unit time. Then the profit rate function is,

,1ݐ)ܲ ,3ݐ (ݏ = ܽ)ݏ − (ݏܾ −  
ܣ
ܶ
−
ܥ
ܶߛ

log ቆ
ߙ) ߙ − (3ݐߛ

ߙ) − ߙ)(1ݐߛ −  ቇ(ܶߛ

        
−  
ℎ
ܶ
቎ න ቈ݁−ߟݐߠ න ቆ

1
ߙ − ݑߛ

− (ܽ − ቇ(ݏܾ
1ݐ

0
቉ݑ݀ߟݑߠ݁

3ݐ)ݔ (ݏ,

0

 ݐ݀

                 
−න ቈ݁−ߟݐߠ න ቆ

1
ߙ − ݑߛ

− (ܽ − ቇ(ݏܾ
1ݐ

ݐ
቉ݑ݀ߟݑߠ݁

1ݐ

0

 ݐ݀

         

          −න ቈ݁ න ቆߙ − ݑߛ −
(ܽ − ቇ(ݏܾ

ݐ
݁

0

− (ܽ − (ݏܾ න ቈ݁−ߟݐߠ න ݑ݀ߟݑߠ݁
ݐ

1ݐ

቉ ݐ݀

3ݐ)ݔ (ݏ,

1ݐ

቏ 

                      −
ߨ
ߛܶ
ቂ3ݐ − ܶ + ቂܶ − 3ݐ −

1
ߛ

ߙ) − (3ݐߛ + 1
(ݏܾ−ܽ)ߛ2

log ቀ ܶߛ−ߙ
3ݐߛ−ߙ

ቁቃ log ቀ ܶߛ−ߙ
3ݐߛ−ߙ

ቁቃ                                              (18)

4 Optimal Ordering Policies of the Model with Shortages:
In this section we obtain the optimal policies of the system under study. To find the optimal values of

t1, t3 and s, we obtain the first order partial derivatives of P (t1, t2, t3, s) given in equation (18) with respect to t1,
t3 and s and equate them to zero. The condition for minimization of P (t1, t3, s) is

ܦ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

2
1 3

2
1

( , , )P t t s
t




2
1 3

1 3

( , , )P t t s
t t


 

2
1 3

1

( , , )P t t s
t s


 

2
1 3

1 3

( , , )P t t s
t t


 

2
1 3

2
3

( , , )P t t s
t




2
1 3

3

( , , )P t t s
t s


 

2
1 3

1

( , , )P t t s
t s


 

2
1 3

3

( , , )P t t s
t s


 

2
1 3

2

( , , )P t t s
s


 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

< 0 

Where,  D is the Hessian matrix.
Differentiating P (t1, t3, s) with respect to t1 and equating to zero, we get

ܥ
ߙ − 1ݐߛ

+ ℎ݁1ݐߠ
ߟ
቎൬

1
ߙ − 1ݐߛ

− (ܽ − ൰(ݏܾ ቎ න ݐ݀ߟݐߠ−݁

3ݐ)ݔ (ݏ,

0

−න ߟݐߠ−݁
1ݐ

0

 ቏ݐ݀

      +(ܽ − ∫(ݏܾ 3ݐ)ݔݐ݀ߟݐߠ−݁ (ݏ,
1ݐ

ቃ = 0      (19)

K.  Srinivasa  Rao, et al.,  JUSPS-A  Vol. 29(11), (2017). 489



Differentiating P (t1, t3, s) with respect to t3 and equating to zero, we get

ߙ)ܥ − (ܶߛ − ℎ݁−3ݐ)ݔ)ߠ ߟ((ݏ, ቈ
1

(ܽ − (ݏܾ
න ൬

1
ߙ − ݑߛ

− (ܽ − ൰(ݏܾ
1ݐ

0
ݑ݀ߟݑߠ݁ − 

∫ 3ݐ)ݔݑ݀ߟݑߠ݁ (ݏ,
1ݐ

ቃ+ ߨ
ߛ
ቂ(ߙ − −1)(3ݐߛ ߙ + (ܶߛ − ܶ)ߛ − −(3ݐ 1

ݏܾ−ܽ
log ቀ ܶߛ−ߙ 

3ݐߛ−ߙ
ቁቃ = 0              (20)

Differentiating  P (t1, t3, s) with respect to 's' and equating to zero, we get

ܽ − ݏ2ܾ −
ℎ
ܶ ቈݕ

,3ݐ) 3ݐ)ݔ൫ߠ−݁(ݏ ߟ൯(ݏ, න ቆ
1

ߙ − ݑߛ −
(ܽ − ቇ(ݏܾ

1ݐ

0
ݑ݀ߟݑߠ݁ + 

ܾ න ቎݁−ߟݐߠ න ݑ݀ߟݑߠ݁

1ݐ

0

቏ ݐ݀

3ݐ)ݔ (ݏ,

0

− ܾන ቎݁−ߟݐߠ න ݑ݀ߟݑߠ݁

1ݐ

ݐ

቏ ݐ݀

1ݐ

0

+ 

ܾ න ቎݁−ߟݐߠ න݁ݑ݀ߟݑߠ
ݐ

1ݐ

቏ ݐ݀

3ݐ)ݔ (ݏ,

1ݐ

− (ܽ − ,3ݐ)ݕ(ݏܾ 3ݐ)ݔ൫ߠ−݁(ݏ ൯(ݏ,
ߟ
න ݑ݀ߟݑߠ݁

3ݐ)ݔ (ݏ,

1ݐ

቏ 

 − ܾߨ

2ܶ൫(ݏܾ−ܽ)ߛ൯2 ቀlog ቀ ܶߛ−ߙ
3ݐߛ−ߙ

ቁቁ
2

= 0  

where,    3ݐ)ݔ , (ݏ = 2ݐ =  ܶ + 1
(ݏܾ−ܽ)ߛ

log ቀ ܶߛ−ߙ
3ݐߛ−ߙ

ቁ    and

,3ݐ)ݕ               (ݏ =
߲
ݏ߲
,3ݐ)ݔ (ݏ =

ܾ
ܽ)ߛ − 2(ݏܾ log ൬

ߙ  − ܶߛ
ߙ − 3ݐߛ

൰ 

Solving the equations (19), (20) and (21) simultaneously, we obtain the optimal time at which production

is stopped 1ݐ
∗ , the optimal time 3ݐ

∗  at which the production is restarted after accumulation of backorders and
the optimal selling price s* .

The optimum production quantity Q* in the cycle of length T is obtained by substituting the optimal

values of 1ݐ
∗  and 3ݐ

∗ in equation (3.9) as

ܳ∗ =  1
ߛ

log ቀ ߙ 3ݐߛ−ߙ) 
∗)

1ݐߛ−ߙ)
ܶߛ−ߙ)(∗ )ቁ        (22)

5  Results and Discussion on EPQ Model with Shortages:

            Sensitivity analysis is carried to explore the effect of changes in model parameters and costs on the
optimal policies, by varying each parameter (-15%, -10%, -5%, 0%, 5%, 10%, 15%) at a time for the model under
study. The results are presented in Table 1(a) and Table 1(b). The relationship between the parameters and the
optimal values of the replenishment schedule is shown in Figure 2.

            It is observed that the costs are having a significant influence on the optimal production quantity and

replenishment schedules. As the setup cost ‘A’ decreases, the optimal production downtime 1ݐ
∗ , the optimal

production quantity Q* and the profit rate P* are increasing and the
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Table 1(a) Sensitivity Analysis of the Model – With Shortages
Variation Optimal -15% -10% -5% 0% 5% 10% 15%

Parameters Policies

 ࢚૚∗  7.7887 7.7871 7.7855 7.7839 7.7822 7.7806 7.779

  3ݐ
∗ 9.4573 9.4596 9.4619 9.4642 9.4665 9.4688 9.4711

  s* 17.7875 17.7906 17.7936 17.7966 17.7997 17.8027 17.8057

  Q* 29.2339 29.22 29.2061 29.1922 29.1783 29.1644 29.1505

  P* 74.1892 72.9544 71.7197 70.4849 69.2501 68.0154 66.7806

C ࢚૚∗  7.8472 7.8262 7.8051 7.7839 7.7625 7.7411 7.7201

  3ݐ
∗ 9.3525 9.3895 9.4267 9.4642 9.502 9.54 9.5782

s* 17.7874 17.7905 17.7936 17.7966 17.7996 17.8025 17.805

  Q* 29.8175 29.6113 29.4028 29.1922 28.9794 28.7645 28.5475

  P* 74.3954 73.0689 71.7653 70.4849 69.2281 67.9952 66.7842

h ࢚૚∗  7.7907 7.7884 7.7861 7.7839 7.7816 7.7794 7.7771

  3ݐ
∗ 9.4531 9.4568 9.4605 9.4642 9.4679 9.4716 9.4753

  s* 17.8367 17.8233 17.81 17.7966 17.7833 17.77 17.7566

  Q* 29.2563 29.2349 29.2135 29.1922 29.1709 29.1496 29.1283

  P* 70.0055 70.1646 70.3244 70.4849 70.6461 70.8081 70.9707
 ࢚૚∗  7.7836 7.7837 7.7838 7.7839 7.784 7.7841 7.7842

  3ݐ
∗ 9.4992 9.4875 9.4759 9.4642 9.4526 9.441 9.4293

  s* 17.7994 17.7985 17.7976 17.7966 17.7957 17.7948 17.7938

  Q* 29.0537 29.1 29.1461 29.1922 29.2381 29.284 29.3297

  P* 70.1435 70.2557 70.3695 70.4849 70.6019 70.7205 70.8407

 ࢚૚∗  7.7584 7.7594 7.7713 7.7839 7.7951 7.8049 7.8132

  3ݐ
∗ 9.7335 9.5758 9.5052 9.4642 9.4372 9.418 9.4036

  s* 17.9335 17.8586 17.8205 17.7966 17.78 17.7677 17.7581

Q* 50.5859 39.452 33.3184 29.1922 26.1418 23.7575 21.8239

P* 45.0981 58.2576 65.5364 70.4849 74.1849 77.1077 79.5008

 ࢚૚∗  7.7995 7.7945 7.7892 7.7839 7.7787 7.7746 7.7734

  3ݐ
∗ 9.3791 9.4054 9.4333 9.4642 9.5008 9.5477 9.6162

  s* 17.7706 17.7777 17.7862 17.7966 17.8102 17.8288 17.8569

  Q* 24.6423 25.8791 27.3622 29.1922 31.5418 34.7442 39.567

  P* 76.4693 74.7751 72.8208 70.4849 67.5602 63.6472 57.8171
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Table 1(b) Sensitivity Analysis of the Model – With Shortages
Variation Optimal -15% -10% -5% 0% 5% 10% 15%

Parameters Policies

 ࢚૚∗  7.783 7.7833 7.7836 7.7839 7.7842 7.7844 7.7847

  3ݐ
∗ 9.4645 9.4644 9.4643 9.4642 9.4641 9.464 9.4639

  s* 17.7955 17.7958 17.7962 17.7966 17.797 17.7974 17.7978

  Q* 29.191 29.1914 29.1918 29.1922 29.1926 29.193 29.1934

  P* 70.5001 70.495 70.49 70.4849 70.4799 70.4748 70.4698

 ࢚૚∗  7.783 7.7833 7.7836 7.7839 7.7842 7.7844 7.7847

  3ݐ
∗ 9.4645 9.4644 9.4643 9.4642 9.4641 9.464 9.4639

  s* 17.7954 17.7958 17.7962 17.7966 17.797 17.7974 17.7978

  Q* 29.191 29.1914 29.1918 29.1922 29.1926 29.193 29.1934

  P* 70.5002 70.4951 70.49 70.4849 70.4798 70.4747 70.4697

b ࢚૚∗  7.8026 7.7959 7.7896 7.7839 7.7787 7.774 7.7699

  3ݐ
∗ 9.4387 9.4479 9.4565 9.4642 9.4712 9.4774 9.4827

  s* 18.647 18.3754 18.0917 17.7966 17.4912 17.1762 16.8526

  Q* 29.3485 29.2921 29.2399 29.1922 29.1491 29.1108 29.0776

  P* 87.7922 81.7651 75.9933 70.4849 65.2453 60.2771 55.5807

a ࢚૚∗  7.7561 7.7634 7.7728 7.7839 7.7962 7.8097 7.8241

  3ݐ
∗ 9.4989 9.4907 9.4789 9.4642 9.4474 9.4288 9.4087

  s* 16.7352 17.1094 17.4642 17.7966 18.1048 18.3871 18.6424

  Q* 28.9724 29.0268 29.1015 29.1922 29.2954 29.4088 29.5303

  P* 36.6672 47.5851 58.8665 70.4849 82.4099 94.6082 107.044
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Fig 2: Relationship between parameters and optimal values with shortages

optimal production uptime 3ݐ
∗ and the optimal selling price s* are decreasing. As the cost per unit ‘C’ decreases,

the optimal production downtime ࢚ ૚
∗  , the optimal production quantity Q* and the profit rate P* are increasing

and the optimal production uptime 3ݐ
∗ and the optimal selling price s* are decreasing. As the holding cost ‘h’

decreases the optimal production downtime ࢚ ૚
∗  , the optimal selling price s* and the optimal production quantity

Q* are increasing and the optimal production uptime 3ݐ
∗ and the profit rate P* are decreasing. As the shortage

cost ‘’ decreases, the optimal production downtime 3ݐ
∗ and the optimal selling price s* are increasing and the

optimal production downtime ࢚૚∗  , the optimal production quantity Q*  and the profit rate function P* are
decreasing.

As the production rate parameter ‘’ decreases, the optimal production downtime ࢚ ૚
∗   and the profit rate

function P* are increasing and the optimal production downtime 3ݐ
∗, the optimal selling price s* and the optimal

ordering quantity Q* are decreasing. As production parameter ‘’ decreases, the optimal production downtime

3ݐ
∗, the optimal selling price s* and the optimal production quantity Q* are increasing and the optimal production

downtime ࢚૚∗   and the profit  rate P* are decreasing. As deteriorating parameter   decreases, the optimal

production uptime 3ݐ
∗, the profit rate P* are increasing and the optimal production downtime ࢚ ૚

∗  , the optimal

selling price s* and the optimal production quantity Q* are decreasing. Another deteriorating parameter  

decreases, the optimal production uptime 3ݐ
∗ and the profit rate P* are increasing and the optimal production

downtime ࢚ ૚
∗  , the optimal selling price s* and the optimal production quantity Q* are decreasing. As demand

parameter a decreases, the optimal production up time 3ݐ
∗ increases and the optimal production downtime ࢚ ૚

∗  ,
the optimal selling price s*, the optimal production quantity Q* and the profit rate P* are decreasing. Another

demand parameter b decreases the optimal production downtime ࢚ ૚
∗  , the optimal selling price s* the optimal
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production quantity Q* and the profit rate P* are increasing and the optimal production up time 3ݐ
∗ decreases.

6 EPQ Model without Shortages:
In this section the inventory model for deteriorating items without shortages is developed and analyzed.

Here, it is assumed that shortages are not allowed and the stock level is zero at time  t = 0. The stock level
increases during the period (0, t1)  due to excess production after fulfilling the demand and deterioration. The
production stops at time t1 when the stock level reaches S. The inventory decreases gradually due to demand
and deterioration in the interval ( t1, T).  At time T the inventory reaches zero. The schematic diagram representing
the instantaneous state of inventory is given in Figure 3.

Fig 3: Schematic diagram representing the inventory level

Let I(t) be the inventory level of the system at time ‘t’ (0  t  T). Then the differential equations governing the
instantaneous state of I(t) over the cycle of length T are
݀
ݐ݀
(ݐ)ܫ + ℎ(ݐ)(ݐ)ܫ =

1
ߙ − ݐߛ

− (ܽ − ; (ݏܾ                       0 ≤ ݐ ≤ 1ݐ  (23)

݀
ݐ݀
(ݐ)ܫ + ℎ(ݐ)(ݐ)ܫ = −(ܽ − ;          (ݏܾ 1ݐ                        ≤ ݐ ≤ ܶ  (24)

where, h(t) is as given in equation (3), with the initial conditions I(0) = 0, (1ݐ)ܫ = ܵ  and I(T) = 0.
Substituting h(t) in equations (23) and (24) and solving the differential equations, the on hand inventory at time
‘ t ‘ is obtained as

(ݐ)ܫ = 1ݐ൫ߠ݁ܵ
ߟݐ−ߟ ൯ − ߟݐߠ−݁ ∫ ቀ 1

ݑߛ−ߙ
− (ܽ − 1ݐቁ(ݏܾ

ݐ ;  ݑ݀ߟݑߠ݁     0 ≤ ݐ ≤ (25)         1ݐ

(ݐ)ܫ = 1ݐ൫ߠ݁ܵ
ߟݐ−ߟ ൯ − (ܽ − ߟݐߠ−݁(ݏܾ න ;                     ݑ݀ߟݑߠ݁ 1ݐ       ≤ ݐ ≤ ܶ

ݐ

1ݐ

  (26)

Production quantity Q in the cycle of length T is

ܳ =  1
ߛ

log ቀ ߙ  
             ቁ(1ݐߛ−ߙ)
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From equation (25) and using the initial condition I(0) = 0, we obtain the value of ‘S’ as

ܵ = 1ݐߠ−݁
ߟ
∫ ቀ 1

ݑߛ−ߙ
− (ܽ − 1ݐቁ(ݏܾ

0 (28)                                                                              ݑ݀ߟݑߠ݁

Let  1ݐ)ܭ, be the total production cost per unit time. Since the total production cost is the sum of the set up  (ݏ
cost, cost of the units, the inventory holding cost. Therefore, the total production cost per unit time becomes

1ݐ)ܭ , (ݏ =  
ܣ
ܶ +

ܥ
ܶߛ log ൬

 ߙ
ߙ − 1ݐߛ

൰ 

 
 + 

ℎ
ܶ
቎න ቈܵ݁ߠ൫1ݐ

ߟݐ−ߟ ൯ − ߟݐߠ−݁ න ൬
1

ߙ − ݑߛ
− (ܽ − ൰(ݏܾ

1ݐ

ݐ
቉ݑ݀ߟݑߠ݁

1ݐ

0

 ቏ݐ݀

 + ∫ ቂܵ݁ߠ൫1ݐ
ߟݐ−ߟ ൯ − (ܽ − ߟݐߠ−݁(ݏܾ ∫ ݐݑ݀ߟݑߠ݁

1ݐ
ቃܶ

1ݐ
(29)   ݐ݀

Let ܲ(1ݐ, be the profit rate function. Since the profit rate function is the total revenue per unit minus total  (ݏ
production cost per unit time. We have,

,1ݐ)ܲ (ݏ = ܽ)ݏ − (ݏܾ −  
ܣ
ܶ
−
ܥ
ܶߛ

log ൬
 ߙ

ߙ − 1ݐߛ
൰ 

−  
ℎ
ܶ
቎න ቈ݁−ߟݐߠ න ቆ

1
ߙ − ݑߛ

− (ܽ − ቇ(ݏܾ
1ݐ

0
቉ݑ݀ߟݑߠ݁

ܶ

0

 ݐ݀

 −∫ ቈ݁−ߟݐߠ ∫ ቆ 1
ݑߛ−ߙ

− (ܽ − 1ݐቇ(ݏܾ
ݐ 1ݐ቉ݑ݀ߟݑߠ݁

0 ݐ݀ − (ܽ − ∫(ݏܾ ቂ݁−ߟݐߠ ∫ ߟݑߠ݁ ݐݑ݀
1ݐ

ቃ ܶݐ݀
1ݐ

቉    (30)

7  Optimal ordering policies of the model without shortages :
In this section we obtain the optimal policies of the inventory system under study. To find the optimal

values of t1 and s, we equate the first order partial derivatives of  P(t1,s)  with respect to  t1 and andequate them
to zero. The condition for minimum of  P(t1,s) is

ܦ =
ተ
ተ

2
1
2
1

( , )P t s
t




2
1

1

( , )P t s
t s


 

2
1

1

( , )P t s
t s


 

2
1
2

( , )P t s
s




ተ
ተ

< 0 

Differentiating  P(t1,s)  with respect to t1 and equating to zero, we get
ܥ

1ݐߛ−ߙ
+ ℎ݁1ݐߠ

ߟ
ቂቀ 1
1ݐߛ−ߙ

− (ܽ − ቁ(ݏܾ ቂ∫ ܶݐ݀ߟݐߠ−݁
0 − ∫ 1ݐߟݐߠ−݁

0 ቃݐ݀ + (ܽ − ∫(ݏܾ ܶݐ݀ߟݐߠ−݁
1ݐ

ቃ = 0  (31)

Solving the equations (31), we obtain the optimal time   of t1 at which the production is to be stopped.

Differentiating P(t1,s)  with respect to  and equating to zero, one can get
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ܶ(ܽ − (ݏ2ܾ − ℎܾ ቎න ቎݁−ߟݐߠ න ݑ݀ߟݑߠ݁

1ݐ

0

቏ ݐ݀
ܶ

0

−න ቎݁−ߟݐߠ න ݑ݀ߟݑߠ݁

1ݐ

0

቏ ݐ݀

1ݐ

0

 

 +∫ ቂ݁−ߟݐߠ ∫ ݐݑ݀ߟݑߠ݁
1ݐ

ቃ ܶݐ݀
1ݐ

ቃ     =  0   (32)

Solving the equations (32), we obtain the optimal value of s of t1 at which the production is to be stopped.
The optimal production quantity Q*  in the cycle of length T is obtained by substituting the optimal values of
t1 in equation (27) as

ܳ∗ =  1
ߛ

log ቀ ߙ  
1ݐߛ−ߙ)

∗)ቁ      (33)

8 Results and Discussion of the model without shortages:

Sensitivity analysis is carried to explore the effect of changes in model parameters and costs on the
optimal policies, by varying each parameter (-15%, -10%, -5%, 0%, 5%, 10%, 15%) at a time for the model under
study. The results are presented in Table 2(a) and Table 2(b). The relationship between the parameters and the
optimal values of the production schedule is shown in Figure 4.

It is observed that the costs are having a significant influence on the optimal production quantity and
production schedules. As the setup cost ‘A’ decreases, the optimal production downtime ࢚ ૚

∗  , the optimal selling

price s*, the optimal production quantity Q* and the profit rate P* are increasing.  As the cost per unit ‘C’

decreases, the optimal production downtime ࢚ ૚
∗  , the optimal selling price s*, the optimal production quantity Q*

and the profit rate P* are increasing.   As the holding cost ‘h’ decreases, the optimal production downtime ࢚ ૚
∗  ,

the optimal selling price s* and the optimal production quantity Q* are increasing and the profit rate P*

decreases. As the production rate parameter ‘’ decreases, the optimal production downtime ࢚૚∗  , the optimal

selling price s* and the profit rate function P* are increasing and the optimal production quantity Q* decreases.

As production rate parameter ‘’ decreases, the optimal production quantity Q*

Table 2(a) Sensitivity Analysis of the Model – Without Shortages
Variation Optimal -15% -10% -5% 0% 5% 10% 15%

Parameters policies
A t1

* 7.8306 7.8292 7.8277 7.8262 7.8248 7.8233 7.8218
  s* 16.594 16.5927 16.5914 16.5901 16.5888 16.5875 16.5862
  Q* 16.0302 16.0257 16.0213 16.0168 16.0123 16.0079 16.0034
  P* 47.8934 46.6495 45.4056 44.1617 42.9178 41.6739 40.4301

C t1
* 7.8873 7.867 7.8466 7.8262 7.8058 7.7852 7.7647

  s* 16.5924 16.5916 16.5908 16.5901 16.5893 16.5886 16.5879
  Q* 16.2024 16.1405 16.0787 16.0168 15.9549 15.8931 15.8312
  P* 46.3622 45.6224 44.889 44.1617 43.4408 42.726 42.0175
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h t1
* 7.8394 7.835 7.8306 7.8262 7.8218 7.8175 7.8131

  s* 16.6335 16.619 16.6046 16.5901 16.5756 16.5612 16.5467

  Q* 16.0567 16.0434 16.0301 16.0168 16.0035 15.9903 15.9771

  P* 43.82 43.933 44.0469 44.1617 44.2774 44.394 44.5114

 t1
* 7.7749 7.7974 7.8138 7.8262 7.8359 7.8435 7.8497

  s* 16.5838 16.5863 16.5883 16.5901 16.5916 16.5929 16.5941

  Q* 20.4351 18.7126 17.2589 16.0168 14.9435 14.0068 13.1821

  P* 38.0591 40.4352 42.4433 44.1617 45.6483 46.9473 48.0924

 t1
* 7.8392 7.8354 7.8311 7.8262 7.8207 7.8145 7.8073

  s* 16.5914 16.591 16.5906 16.5901 16.5896 16.589 16.5884

  Q* 15.0054 15.3232 15.6597 16.0168 16.3966 16.8013 17.2335

  P* 45.5209 45.0933 44.6411 44.1617 43.6523 43.1101 42.5318

 t1
* 7.826 7.8261 7.8261 7.8262 7.8263 7.8264 7.8265

  s* 16.5863 16.5876 16.5888 16.5901 16.5913 16.5925 16.5937

  Q* 16.016 16.0163 16.0165 16.0168 16.0171 16.0173 16.0176

  P* 44.1887 44.1796 44.1706 44.1617 44.1529 44.1442 44.1355

 t1
* 7.826 7.826 7.8261 7.8262 7.8263 7.8264 7.8265

  s* 16.5862 16.5875 16.5888 16.5901 16.5914 16.5926 16.5939

  Q* 16.016 16.0163 16.0165 16.0168 16.0171 16.0174 16.0177

  P* 44.1894 44.1801 44.1709 44.1617 44.1527 44.1436 44.1347

Table 2(a) Sensitivity Analysis of the Model – Without Shortages
Variation Optimal -15% -10% -5% 0% 5% 10% 15%

Parameters policies

b t1
* 7.8432 7.8372 7.8316 7.8262 7.8212 7.8165 7.812

s* 17.5178 17.2164 16.907 16.5901 16.2664 15.9367 15.5967

Q* 16.0683 16.0501 16.033 16.0168 16.0016 15.9874 15.9744

P* 58.5317 53.4649 48.6749 44.1617 39.9233 35.9559 32.9889

a t1
* 7.7958 7.8057 7.8158 7.8262 7.8369 7.8479 7.8592

s* 15.6196 15.9553 16.279 16.5901 16.888 17.1722 17.4422

Q* 15.925 15.9546 15.9852 16.0168 16.0493 16.0826 16.117

P* 18.5274 26.7998 35.3482 44.1617 53.2288 62.5369 72.0719
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increases and the optimal production downtime ࢚૚∗  , the optimal selling price s* and the profit rate P* are
decreasing. As deteriorating parameter  decreases, the profit rate  increases and the optimal production

downtime ࢚ ૚
∗  , the optimal production quantity Q* and the optimal selling price s* are decreasing. As another

deteriorating parameter  '' decreases, the profit rate P*  increases and the optimal production downtime  ࢚ ૚
∗  ,

the optimal production quantity Q* and the optimal selling price s* are decreasing. As demand parameter 'a'
decreases, the optimal production downtime  ࢚ ૚

∗  , the optimal selling price s*  the optimal production quantity

Q*  and the profit rate P* are decreasing. As another demand parameter 'b' decreases, the optimal production

downtime ࢚ ૚
∗  , the optimal selling price s* the optimal production quantity Q* and the profit rate P* are increasing.

Conclusions

This paper addresses the derivation of optimal ordering policies of an EPQ model with the assumption
that the production process is random and follows a generalized Pareto distribution. Further it is assumed that
the life time of the commodity is random and follows a Weibuull distribution. The generalized Pareto distribution
characterizes the production process more close to the reality. The Weibull rate deterioration can include

Fig 4:  Relationship between parameters and optimal values with shortages
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increasing/decreasing/constant rates of deterioration for different values of parameters. The sensitivity analysis
of the model reveals that the production distribution parameters have significant influence on the optimal
values of the production uptime, production downtime, production quantity and profit. The deterioration
distribution parameter also influencing the optimal values of the model. The production and deterioration
distribution parameters can be estimated by using historical data. The production manager can obtain the
optimal production downtime and uptime, by estimating the parameters and costs. It is also observed that the
model with shortages has less production cost per a unit time than that of without shortages. This model also
includes some of the earlier models as particular cases for specific or limiting values of the parameters. This
model can be extended for the cases of changing money value (inflation) and multicommodity production
systems which will be taken elsewhere.
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