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Abstract

In this article, multiply type II censored observation from Rayleigh model is considered. Using conjugate
prior for parameter, predictive pdf, hence  and predictive limits are obtained. We also obtained prediction limits
for double, mid censoring as well. A Monte Carlo study of 1000 randomly generated sample is performed and
prediction limits for different censoring scheme is compared.
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1.  Introduction

Rayleigh model which is special case of Weibull model has a wide application, such as in life testing
experiments which rapidly age with time, as its failure rate is a liner function of time. In communication engineering
Rayleigh model play important role and has been successfully used for radio active power distribution.
The time to failure x, of a Rayleigh component has probability function

(ݔ)݂ = ݔ
2ߪ ݌ݔ݁ ቀ−

2ݔ

ݔ            2ቁߪ2 > 0, ߪ > 0                                                (1)
with cumulative distribution function

(ݔ)ܨ = 1− ݌ݔ݁ ቀ− 2ݔ

   2ቁߪ2
                                                                          (2)



Vastoshpati Shastri, et al.,  JUSPS-A  Vol. 30(1), (2018). 33

and the reliability function at time t

(ݐ)ܴ = ݌ݔ݁ ቀ− 2ݐ

2ቁ                                                                                      (3)ߪ2

For larger t, reliability of a Rayleigh components decreases with time more rapidly than in the case of
exponential distribution.

For making inference about future sample characteristics, predictive density is determine by combining
the posterior distribution with the pdf of future characteristics given parameter. Integration with respect to each
of parameter of this combination yields the predictive distribution for the future characteristics which summarizes
the knowledge about future sample in the light of informations provided by the given data (see, Aitchen and
Dunsmore)2.

Bhattacharya and Tyagi(1990) mentioned that in some clinical studies dealing with cancer patients, the
survival pattern follows the Rayleigh distribution.  Dyer and Smith7,8 obtained Best linear unbiased estimator of
the parameter of Rayleigh distribution. Sinha and Howlader(1983) obtained credible and HPD intervals for the
parameter and reliability function of this distribution. Bayesian approach inference in reliability studies based
on doubly type II data was presented by Frenandez9. Dey and Dey5 obtained inference for the Rayleigh model
under progressively Type-II censoring with binomial removal. Abdel-Hamid and AL-Hussaini1 obtained Bayesian
prediction for type-II progressive-censored data from the Rayleigh distribution under progressive-stress model.
Based on general progressive type II censoring Mousa and Sagheer(2006), Kim and Han10,  Dey et al.6 dealt the
model in Bayesian perspective.

Kim and Han10 obtained classical and Bayesian estimators when data is compounded with multiply
type II censoring. Shastri et al. (2010) obtained Bayes prediction limits for exponential distribution for multiply
type II censored data. Dey and  Das4 discussed prediction interval for a Rayleigh distribution. But there appears
to be nothing in the literature for Bayes prediction limits for Rayleigh model when observations are multiply
type II censoring.

2. Censoring Scheme :
Multiply type II censored samples may arise in practice in a number of ways. They may arise, for

example, in life testing experiments when the life times of some units are not observed due to mechanical or
experimental difficulties. Another situation where multiply censored samples arise naturally is when some units
failed between two points of observation with exact times to failures of these units unobserved. The multiply
type II censoring was discussed by Balasubramanian and Balakrishnan3, Upadhyay et. al.13 among others.

Out of N items put on test, the multiply type II censoring scheme supposes that first r, last s and middle

l observations are censored and the only observations available are 1+ݎݔ < ⋯ ݇+ݎݔ >   and
1+݈+݇+ݎݔ < ⋯ < If we substitute r=l=0 this censoring scheme reduces to type II right censoring  ..ݏ−ܰݔ
scheme, on substituting l=s=0, censoring scheme reduces to type II right censoring scheme. This also reduces
to a doubly type II censoring scheme when l=0, a reverse scheme named type II mid censoring appears at
r=s=0.

3. Prediction limits :
Let us assume that 1ݔ, 2ݔ , … , .be  a random sample of size N drawn from a Rayleigh model (1)  ܰݔ

Consider the multiply type II censoring scheme described in previous section and let 1+ݎݔ < ⋯ ݇+ݎݔ >  
and 1+݈+݇+ݎݔ < ⋯ < .be the observed life times .ݏ−ܰݔ

The likelihood function (LF) for this situation can be written as
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ܮ  = ܰ!
!ݏ!݈!ݎ

ݎ[(1+ݎݔ)ܨ] (1+݈+݇+ݎݔ)ܨ] − 1]݈[(݇+ݎݔ)ܨ − ∏ݏ[(ݏ−ܰݔ)ܨ ݂൫݅ݔ ൗߪ ൯ݎ+݇
1+ݎ=݅ ∏ ݂൫݅ݔ ൗߪ ൯ ܰ−ݏ

1+݈+݇+ݎ=݅

(4) 
        (4)

Using (1) and (3), and on simplification, it reduces to

ܮ = ܰ!
ݎ !ݏ!݈!

ቀ 1
2ቁߪ

ܣ
∑ ∑ Ω݈݌

݃=0
ݎ
0=݌ Ω݃ . ݌ݔ݁ ቂ− ܵܿ+ܾܵ

2ߪ2 ቃ∏ ݇+ݎ݅ݔ
1+ݎ=݅ ∏ ݏ−ܰ݅ݔ

1+݈+݇+ݎ=݅  (5)

where

ܵܿ = 1+ݎݔ݌
2 + (݈ − ݇+ݎݔ(݃

2 + 1+݈+݇+ݎݔ݃
2 

ܾܵ = 2ݏ−ܰݔݏ + ෍ 2݅ݔ
݇+ݎ

1+ݎ=݅

+ ෍ 2݅ݔ
ݏ−ܰ

1+݈+݇+ݎ=݅

 

Ω݌ = ݌(1−) ቀ݌ݎቁ,  

Ω݃ = (−1)݃ ൬
݈
݃
൰ 

and ܣ = ܰ − ݎ − ݈ −  ݏ

Consider a conjugate family of prior for the parameter 

g(σ a,b⁄ )= ab

2ܾ−1(ܾ)߁  
݌ݔ2ܾ−1݁−ߪ ቂ− ܽ

2ቃߪ2 ߪ    ; > 0;ܽ, ܾ > 0         

Combining LF(5) with prior (6) via Bayes theorem, the posterior distribution is defined and obtained as

൯ݔหߪ൫݌ =
(ߪ)൯݃ߪ,ݔ൫ܮ

ߪ݀(ߪ)൯݃ߪ,ݔ൫ܮ∫
 

൯ݔหߪ൫݌ = 1
(ܣ+ܾ)߁

1
1−ܣ+2ܾ

∑ ∑ Ω݈݌
݃=0

ݎ
0=݌ Ω݃݌ݔ1݁−(ܾ+ܣ)2−ߪ ቀ−

ܵܿ+ܾܵ+ܽ
2ߪ2 ቁ

∑ ∑ Ω݈݌
݃=0

ݎ
0=݌ Ω݃(ܵܿ+ܾܵ+ܽ)             

 (7)

Let  1ݕ, 2ݕ , … , ݕ݉   be the second independent random sample of size m of future observation from the model
(1), then the density of nth future observation will be obtained by

(ߪ|ݕ)݂ =
݉!

(݊ − 1)! (݉ − ݊)!
1](ݕ)1݂−݊[(ݕ)ܨ] − ݊−݉[(ݕ)ܨ

Substituting and solving 

(ߪ|ݕ)݂ = ݉,݊)1−ߚ − ݊ + 1)∑ Ω݅݁݌ݔ ቂ−
1

2ߪ2 ܯ) + 2ቃ݊−1ݕ(݅
݅=0 ቀ ݕ

2ቁߪ  (8)

where

݉,݊)1−ߚ − ݊ + 1) =
݉!

(݊ − 1)! (݉ − ݊)! 

and ܯ = ݉ − ݊ + 1



Then the Bayes Predictive density for future nth order observation will be

ℎ൫ݕหݔ൯ = ൯ݔหߪ൫݌(ߪ|ݕ)݂∫  ߪ݀

substituting the values

ℎ൫ݕหݔ൯ =
2(ܾ + ݉,݊)1−ߚ(ܣ −݊ + 1)

(ݔ)ܥ ෍෍෍Ω݌Ω݃Ω݅[ ܿܵ + ܾܵ + ܽ + ܯ) + (1+ܾ+ܣ)−[ݕ(݅
݊−1

݅=0

݈

݃=0

ݎ

0=݌

 ݕ

where

(ݔ)ܥ = ෍෍Ω݌Ω݃[ܵܿ + ܾܵ + (ܾ+ܣ)−[ܽ

݈

݃=0

ݎ

0=݌

 

In the context of Bayes prediction, we say here that (1݊ݐ , 2݊ݐ  ) is a 100(1)% limit for future nth ordered
random variable, if

1݊ݐൣݎܲ ≤ (݊)ݕ ≤ 2݊ݐ ൧ = 1 −  ߙ

Here1݊ݐ  and 2݊ݐ  are said to be lower and upper Bayes prediction limit for nth ordered random variable y(n)  and
(1)  is called the confidence prediction coefficient. One-sided Bayes Prediction bound limits are obtained by
solving

(݊)ݕൣݎܲ ≤ 1݊ݐ ൧ =
ߙ
2 = (݊)ݕൣݎܲ ≥  1݊൧ݐ

Above can be rewritten as

(݊)ݕൣݎܲ ≤ 1݊൧ݐ = ∫ ℎ൫ݔ/ݕ൯݀ݕ = ߙ
2

1݊ݐ
0     (9)

and

ݎܲ (݊)ݕൣ ≤ 2݊ݐ ൧ = ∫ ℎ൫ݔ/ݕ൯݀ݕ = 1− ߙ
2

2݊ݐ
0                                                                 (10)

Using (8), (9) and (10), the one sided Bayes Prediction bound limits are obtained by solving

)(
)(1

xC
Mn, ෍෍෍Ω݌Ω݃Ω݅

݊−1

݅=0

݈

݃=0

ݎ

0=݌

{ܵܿ + ܾܵ + ܽ + ܯ) − ݅
ܣ)−} + ܾ) + 1}(

 )(
1

iM   [(Sc +Sb + a)(A+b)(Sc+Sb+a+(M+i)t1n
2)(A+b)]=

2


     (11)

and

)(
)(1

xC
Mn, )

෍෍෍Ω݌Ω݃Ω݅ ቈ
݊−1

݅=0

݈

݃=0

ݎ

0=݌

{ ܿܵ + ܾܵ + ܽ + −ܯ) ݅)
ܣ)−} + ܾ) + ܯ){1

)(
1

iM  [(Sc +Sb + a (M + i)t2n
2)(A+b)]=

2


 (12)
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4. Discussion

For numerical illustration we have computed prediction interval for the smallest order future observation
on the basis of 1000 samples each of size 10 and 20 generated by Monte Carlo simulation technique.

A random sample of size N=10 was generated from the distribution in (1) for different values of . In
order to obtain the prediction intervals for first observation of a future sample of size m=10 at a nominal 95%
prediction level choosing m=10,20 for N=10 and 20 respectively. Different combination of r,k,l and s are taken
considering different censoring fraction. The effects of hyperparameters a = (0.01,0.1,1.0,2.0,4,0) and b = (1.0,2,0,4.0)
was also considered separately.

When N=m=20, it can be observed from the tables 4-6, at 95% confidence level, as censored sample
size decreases prediction intervals become shorter. Prediction limits are found shortest at r=6, k=3, l=6, s=4. On
comparing different censoring scheme, namely Multiply, right, left, doubly and mid, it is evident from tables that
multiply type II censoring scheme outperforms other censoring schemes.

Effect of hyperparameter a can be studied from each table. For fixed hyperparamer b, prediction
intervals increases with an increase in a everywhere. A reverse case is notices with the variation in hyperparameter
b. With the increase in value of b, prediction intervals decreases.

Similar patterned result is found when size of informative as well as future sample is taken at  N=m=10.
The results are summarized in tables 1-3, at 95% confidence level.  For different values of r ,k, l and s, prediction
intervals are reported with variation in a keeping b fixed.  With more number of censored observations, prediction
intervals found to be shorter. It can further be shorter if a is at minimum value. Keeping other values fixed, we
observe that an increase in b provides shorter prediction interval.

Due to paucity of space tables for 99% prediction confidence is not reported over here, it was found
that prediction intervals converges towards first order future observation only. Prediction intervals obtained
with different constants have same affect but with shorter width. A further study on MCMC methods have
scope to such problems, where data is compounded by complex censoring schemes.

Conclusion

Proposed form of prediction interval is recommended with larger sample size with higher prediction
confidence. With small sample size  multiply type II censoring can be taken under consideration with more
number of censored observations is suggested. As far as prior hyperparameters are concern use of smaller
value of a and larger value of  b is suggested. Comparison with different censoring scheme suggests, the use of
Multiply type II censoring scheme for obtaining lowest prediction interval.

Table 1  Bayes Prediction limits at b=1.0 for sample size  N=m=20 at sigma=2.0
Censoring

Scheme r   k   l   s a=0.01 a=0.1 a=1.0 a=2.0 a=4.0

2   3   1   1 0.005776 0.005778 0.005791 0.005806 0.005835
3   3   1   2 0.005719 0.00572 0.005734 0.00575 0.005782
3   3   2   3 0.005428 0.00543 0.005445 0.005463 0.005498

Multiply 3   3   3   4 0.005247 0.005249 0.005267 0.005286 0.005325
5   3   4   3 0.005378 0.00538 0.005397 0.005415 0.005451
5   3   5   4 0.0051 0.005101 0.00512 0.005141 0.005182
6   3   6   4 0.004967 0.004969 0.004989 0.00501 0.005053

Right 0   3   0   6 0.005443 0.005445 0.005464 0.005486 0.005528
Left 6   3   0   0 0.005656 0.005657 0.005671 0.005685 0.005714

Doubly 3   3   0   3 0.005414 0.005416 0.005432 0.00545 0.005485
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Mid 0   3   6   0 0.005443 0.005445 0.005464 0.005486 0.005528
Table 2. Bayes Prediction limits at b=2.0 for sample size  N=m=20 at sigma=2.0

Censoring
Scheme r   k   l   s a=0.01 a=0.1 a=1.0 a=2.0 a=4.0

2   3   1   1 0.005664 0.005666 0.005679 0.005693 0.005722
3  3  1  2 0.005602 0.005604 0.005618 0.005633 0.005664
3  3  2  3 0.005314 0.005316 0.005331 0.005348 0.005383

Multiply 3  3  3  4 0.005133 0.005135 0.005152 0.005171 0.005208
5  3  4  3 0.005264 0.005266 0.005282 0.005299 0.005335
5  3  5  4 0.004986 0.004988 0.005006 0.005026 0.005066
6  3  6  4 0.004858 0.004859 0.004878 0.004899 0.004941

Right 0  3  0  6 0.005307 0.005309 0.005328 0.005348 0.005389
Left 6  3  0  0 0.005552 0.005553 0.005566 0.00558 0.005609

Doubly 3  3  0  3 0.005301 0.005303 0.005318 0.005335 0.00537
Mid 0  3  6  0 0.005594 0.005595 0.005608 0.005622 0.00565

Table 3 : Bayes Prediction limits at b=4.0 for sample size  N=m=20 at sigma=2.0
Censoring

Scheme r   k   l   s a=0.01 a=0.1 a=1.0 a=2.0 a=4.0

2   3   1   1 0.005463 0.005465 0.005477 0.005491 0.005518
3   3   1   2 0.005395 0.005397 0.00541 0.005424 0.005453
3   3   2   3 0.005113 0.005114 0.005129 0.005145 0.005177

Multiply 3   3   3   4 0.004932 0.004933 0.004949 0.004967 0.005002
5   3   4   3 0.005061 0.005063 0.005078 0.005095 0.005128
5   3   5   4 0.004787 0.004788 0.004806 0.004825 0.004863
6   3   6   4 0.004665 0.004667 0.004685 0.004705 0.004744

Right 0   3   0   6 0.005072 0.005074 0.005091 0.00511 0.005148
Left 6   3   0   0 0.005365 0.005366 0.005378 0.005392 0.005419

Doubly 3   3   0   3 0.0051 0.005102 0.005117 0.005133 0.005165
Mid 0   3   6   0 0.005404 0.005406 0.005418 0.005431 0.005458

Table 4. Bayes Prediction limits at b=1.0 for sample size  N=m=10 at sigma=2.0
Censoring

Scheme r   k   l   s a=0.01 a=0.1 a=1.0 a=2.0 a=4.0

1   2   1   1 0.008196 0.008204 0.008278 0.008359 0.00852
2   2   1   1 0.0082 0.008208 0.008282 0.008363 0.008524
3   2   1   1 0.008199 0.008206 0.00828 0.008362 0.008523
3   2   2   1 0.008207 0.008215 0.008289 0.008371 0.008532
3   2   2   2 0.006797 0.006805 0.006886 0.006981 0.007175
3   2   3   2 0.008707 0.008716 0.008805 0.008903 0.009094

Multiply 3   2   3   3 0.009407 0.009416 0.009507 0.009606 0.009799
Right 0   2   0   4 0.006928 0.006938 0.007043 0.007165 0.007413
Left 4   2   0   0 0.008409 0.008415 0.008481 0.008554 0.008697

Doubly 2   2   0   2 0.006796 0.006804 0.006885 0.006978 0.007171
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Mid 0   2   4   0 0.00835 0.008357 0.008423 0.008496 0.008641
Table 5. Bayes Prediction limits at b=2.0 for sample size  N=m=10 at sigma=2.0

Censoring
Scheme r   k   l   s a=0.01 a=0.1 a=1.0 a=2.0 a=4.0

1   2   1   1 0.007942 0.007949 0.008018 0.008094 0.008245
2   2   1   1 0.007946 0.007952 0.008022 0.008098 0.008248
3   2   1   1 0.007944 0.007951 0.00802 0.008096 0.008247
3   2   2   1 0.007951 0.007958 0.008028 0.008104 0.008255
3   2   2   2 0.00666 0.006666 0.006733 0.006814 0.006984
3   2   3   2 0.008345 0.008354 0.008438 0.008531 0.008711

Multiply 3   2   3   3 0.008956 0.008965 0.00905 0.009144 0.009327
Right 0   2   0   4 0.00674 0.006748 0.006833 0.006933 0.007146
Left 4   2   0   0 0.008163 0.008169 0.008231 0.008299 0.008435

Doubly 2   2   0   2 0.006659 0.006666 0.006733 0.006813 0.006981
Mid 0   2   4   0 0.008107 0.008113 0.008176 0.008245 0.008381

Table 6. Bayes Prediction limits at b=4.0 for sample size  N=m=10 at sigma=2.0
Censoring

Scheme r  k  l  s a=0.01 a=0.1 a=1.0 a=2.0 a=4.0

1  2  1  1 0.007538 0.007544 0.007605 0.007672 0.007805
2  2  1  1 0.007541 0.007547 0.007608 0.007675 0.007808
3  2  1  1 0.007539 0.007545 0.007606 0.007673 0.007806

Multiply 3  2  2  1 0.007545 0.007551 0.007612 0.007679 0.007813
3  2  2  2 0.006484 0.006487 0.006527 0.006581 0.006705
3  2  3  2 0.007783 0.00779 0.007866 0.007949 0.00811
3  2  3  3 0.008264 0.008272 0.008349 0.008433 0.008597

Right 0  2  0  4 0.006519 0.006523 0.006568 0.006631 0.00678
Left 4  2  0  0 0.007763 0.007768 0.007824 0.007885 0.008006

Doubly 2  2  0  2 0.006483 0.006487 0.006527 0.006581 0.006705
Mid 0  2  4  0 0.007712 0.007717 0.007773 0.007835 0.007957
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