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Abstract

The  object  of the  present paper  is to  study  3-dimensional  β- Kenmotsu  manifolds whose metric is
Ricci soliton with respect to Schouten- van Kampen  connection.  We found the condition  for the Ricci soliton
structure  to be invariant under  Schouten-van Kampen  connection.  We have also showed  that the  Ricci
soliton  structure with  respect  to  usual  Levi-Civita connection  transforms to  a  η-Ricci soliton  structure
under  D-homothetic deformation.  Finally  we have  shown  that if a 3-dimensional  β-Kenmotsu manifold admits
a Ricci soliton structure with respect to Schouten-van Kampen connection  and potential vector  field as the
Reeb vector  field, then  the manifold  becomes K -contact  Einstein.

Key words and phrases:  Ricci soliton,  β-Kenmotsu manifold,  Schouten-van Kampen  con- nection,
D-homothetic deformation.
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1.  Introduction

In 1982, Hamilton12 introduced  the notion of Ricci flow to find a canonical metric on a smooth
manifold.  Then Ricci flow has become a powerful tool for the study of Riemannian  manifolds, especially for
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those manifolds with positive curvature.  Perelman27,28 used Ricci flow and  its surgery to prove the Poincare
conjecture.  The Ricci flow is an evolution  equation  for metrics  on a Riemannian  manifold defined as follows:

t


gij (t) = 2Rij .

A Ricci soliton  emerges as the  limit  of the  solutions  of the  Ricci flow.  A solution  to  the  Ricci flow
is called  Ricci soliton  if it  moves only  by  a  one parameter group of diffeomorphisms and scaling. To be
precise, a Ricci soliton on a Riemannian  manifold (M, g) is a triple (g, V, λ) satisfying

(1.1) £V g + 2S + 2λg = 0,
where S is the Ricci tensor,  £V   is the Lie derivative  along the vector field V on M  and  λ   R 13.  The  Ricci
soliton is said to be shrinking,  steady  and expanding  according as λ is negative,  zero and positive respectively.
If λ is a smooth  function  on M  then  the  metric  satisfying  (1.1) is called Ricci almost soliton29. In this
connection it is mentioned  that  Hui and Patra18 recently studied  Ricci almost solition on Riemannian  manifolds.

During the last two decades, the geometry of Ricci solitons has been the focus of attention of many
mathematicians. In particular, it has become more important after Perelman  applied Ricci solitons to solve the
long standing  Poincare conjecture  posed in 1904.  In33 Sharma  studied  the  Ricci solitons  in contact  geometry.
Thereafter  Ricci solitons in contact  metric manifolds have been studied  by various authors  such as Bagewadi
et al.1- 3, Bejan and Crasmareanu4, Blaga6, Calin and Crasmareanu8, Chen and Deshmukh10, Deshmukh  et  al.11,
Hui et  al.9,14-17,19-21, Nagaraja  and Premalatha24, Tripathi35 and many others.

In 1972, Kenmotsu23 introduced  a new class of almost contact  Riemannian manifolds which are
nowadays called Kenmotsu manifolds. It is well known that odd dimensional  spheres admit  Sasakian  structures
whereas odd dimensional hyperbolic  spaces can not  admit  Sasakian  structure, but  have so-called Kenmotsu
structure. Kenmotsu manifolds are normal (non-contact) almost contact Riemannian  manifolds.  Kenmotsu23

investigated  fundamental  properties  on local structure of such manifolds.  Kenmotsu  manifolds are locally
isometric to warped product  spaces with one dimensional base and Kahler fiber. As a generalization  of both
Sasakin and Kenmotsu  manifolds, Oubiña26 introduced the notion of trans-Sasakian manifolds, which are
closely related  to the locally conformal Kahler  manifolds.   A trans-Sasakian manifold of type  (0,0),  (α, 0) and
(0, β) are respectively called the cosympletic, α-Sasakian  and β-Kenmotsu manifold,  α, β  being  scalar  functions.
In  particular, if α  = 0, β  = 1; and α = 1, β = 0 then a trans-Sasakian manifold will be a Kenmotsu  and Sasakian
manifold respectively.   As β is a scalar function,  β-Kenmotsu  manifolds provide a large varieties of Kenmotsu
manifolds.  β-Kenmotsu manifolds have been studied by several authors.  In this connection it may be mentioned
that  Shaikh and Hui studied  locally -symmetric  β-kenmotsu  manifolds31 and extended generalized  -recurrent
β-Kenmotsu  Manifolds32, respectively.   Also Calin and Crasmareanu8 studied  f -Kenmotsu  manifolds.

The Schouten-van Kampen connection is one of the most natural connections adapted  to a pair of
complementary  distributions on a differentiable  manifold endowed with an affine connection5,22,30. Olszak has
studied Schouten- van Kampen connection adapted  to an almost contact  metric structure25. In36, Yildiz et al.
studied  3-dimensional f -Kenmotsu  manifolds with respect to Schouten-van  Kampen connection and obtained
some interesting  result.

Motivated  by these, the present paper deals with the study  of Ricci soliton on 3-dimensional
β-Kenmotsu  manifold with respect to Schouten-van  Kampen connection.   The  paper  is organized  as follows.
Section 2 is concerned  with preliminaries.  In section 3 we have studied  D-homothetic deformation  over a Ricci
soliton structure.  Finally  in section 4 we have studied  Ricci soliton on 3-dimensional β-Kenmotsu  manifolds
with Schouten-van  Kampen connection.
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2. Preliminaries :
A (2n + 1)-dimensional smooth manifold M is said to be an almost contact metric manifold7 if it admits

an (1,1) tensor field , a vector field ξ, an 1-form η and a Riemannian  metric g, which satisfy
(2.1) (a) ξ = 0,  (b) η(X ) = 0,       (c) 2 X = X + η(X)ξ,
(2.2) (a) g(X, Y ) =  g(X, Y ),      (b) η(X ) = g(X, ξ),      (c) η(ξ) = 1,
(2.3) g(X, Y ) = g(X, Y)  η(X )η(Y )
for all X , Y   χ(M ).
An almost contact metric manifold M2n+1 (, ξ, η, g) is said to be a β-Kenmotsu manifold if the following
conditions hold23:
(2.4)                                     X ξ = β[X  η(X )ξ],
(2.5)                          (X )(Y ) = β[g(X, Y )ξ  η(Y )X ].
If β = 1, then a β-Kenmotsu manifold is called a Kenmotsu manifold; and if β is constant, then it is called a
homothetic Kenmotsu manifold. In a β-Kenmotsu manifold, the following relations  hold23,26:
(2.6)                           (X η)(Y ) = β[g(X, Y )  η(X )η(Y )],
(2.7) R(X, Y )ξ   =  β2[η(Y )X  η(X )Y ]

   +  (X β){Y   η(Y )ξ}  (Y β){X  η(X )ξ},
(2.8)                     R(ξ, X )Y  = [β2  + (ξ β)] [η(Y )X  g(X, Y )ξ],
(2.9)    η(R(X, Y )Z )   =  β2 [η(Y )g(X, Z )  η(X )g(Y, Z )]

             (X β){g(Y, Z )  η(Y )η(Z )}
            +  (Y β){g(X, Z )  η(Z )η(X )},

(2.10)               S(X, ξ) = {2nβ2 + (ξ β)}η(X )  (2n  1)(X β)
for  all  X , Y , Z  χ(M ).

Let M (, ξ, η, g) be an almost  contact  metric  manifold.  Then  we have two naturally  defined
distribution in the tangent bundle T M of  M as follows

H = ker(η),  = span(ξ).
Then we have H    = T M , H   = 0 and H  . This decomposition allows one to define the Schouten-

van  Kampen  connection  
~  over an almost contact  metric  structure. The Schouten-van  Kampen  connection


~ on a β-Kenmotsu manifold with respect to Levi-Civita connection   is defined by36

(2.11)                        
~

X Y  = X  Y  + β[g(X, Y )ξ  η(Y )X ].

If  R  and R~ ,  S  and  S~  and  r and r~  be the  Riemann  curvature tensor,  Riccic  urvature and scalar curvature

in a 3-dimensional β-Kenmotsu  manifold with respect to  and 
~  respectively, then we have36

(2.12) R~ (X, Y )Z   =  R(X, Y )Z + β2{g(Y, Z )X  g(X, Z )Y }

+    {g(Y, Z )η(X )ξ  g(X, Z )η(Y ) ξ
+  η(Y )η(Z )X  η(X )η(Z )Y }.

(2.13) S~  (X, Y )  =  S(X, Y ) + (2 β2 +  )g(Y, Z ) +  η(Y )η(Z ).
and
(2.14) r~  = r + 6 β2  + 4  .

for all X, Y, Z  χ(M ), where we are assuming   = ξ β.  A  β-Kenmotsu  manifold is said to be regular if



β2 +    0. The interesting  fact about the connection 
~  is that  the g, ξ and η are all parallel with respect to this

connection.

3. D-homothetic deformation  and Ricci soliton :
Let M (, ξ, η, g) be an almost contact  metric  manifold with dim M  = m = 2n + 1. Then η = 0 defines a

(m  1)-dimensional distribution D on M . By an D-homothetic deformation34, we mean a change of structure
tensor  of the form

(3.1) ~  = ,  ξ~  = 
a
1

ξ,     = a η,      and g  = ag + a(a  1)η   η,

where a is a non-zero positive constant. This is to be noted that  if M (, ξ, η, g) is an almost contact metric
manifold then M̄ (̄ , ξ̄ , η̄ , ḡ) is also an almost contact metric manifold.  Now we have from (2.4) that
(3.2) (£ξ g)(X, Y )   =  g(X ξ, Y ) + g(X, Y  ξ)

         =  2β[g(X, Y )  η(X )η(Y )].
Since the Lie derivative  operator  only depends on the smooth structure of the underlying  manifold so we have
(3.3) (£ξ g)(X, Y )   =  g(X ξ, Y ) + g(X, Y  ξ)

         =  2β[g(X, Y )  η(X )η(Y )]
        =  (£ξ̄ ḡ) (X, Y ).

Again from (1.1) and (3.2) we have
(3.4)                      S(X, Y ) = (β + λ)g(X, Y ) + βη(X )η(Y )
Now applying D-homothetic deformation  we have from (3.4) that

(3.5) S̄(X, Y ) =  g
a


 (X, Y ) + 
 )(1))(1(

2 X
a

a
(Y ).

Next  from (3.3) and (3.5) we have
(£ξ̄ ḡ)(X, Y ) + 2S̄ (X, Y ) + λ̄ḡ (X, Y ) +  (X )η̄(Y ) = 0

for all vector field X, Y, Z  χ(M ) with λ̄ = a
  and   = 

2a
aa  . This shows  that  the structure (ḡ, ξ̄, λ̄, µ̄  )

is an η-Ricci soliton structure on M̄ . Hence we can state  the following:
Theorem 3.1.  If  (g, ξ, λ)  is  a  Ricci  soliton  structure  on  M ,  then  the  D- homothetic  deformation

transforms the Ricci  soliton  structure into  an  η-Ricci soliton structure.

4. The Schouten-van Kampen connection and Ricci almost soliton :
Let the metric g of a 3-dimensional β-Kenmotsu  manifold be a Ricci almost soliton with respect to  .

Now
(4.1) (£ξ g)(X, Y )   =  g(X ξ, Y ) + g(X, Y ξ)

        =  g( 
~

X ξ  β{η(X )ξ  ξ}), Y )

       +  g(X, 
~

Y ξ  β{η(Y )ξ  ξ})

      =  g(
~

X ξ, Y ) + g(X, 
~

Y ξ)  βg(η(X )ξ, Y )
       =  βη(Y ) + βη(X )  βg(X, η(Y )ξ)
        =  (£̃ ξ g)(X, Y ) + β(η(X ) + η(Y ))  2βη(X )η(Y ).

Now from (2.13) and (1.1) we have
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(4.2) (£̃ ξ g) (X, Y ) + 2S̃  (X, Y ) + 2λg(X, Y )

=  (2β  2   )η(X )η(Y )  β{η(X ) + η(Y )}  2{2β2  +  }g(X, Y ).
Now if (g, ξ, λ) be a Ricci almost soliton structure on M with respect to Levi- Civita  connection  then  the Ricci
almost  soliton structure is preserved  for the Schouten-van  Kampen connection if and only if

(4.3)          (2β  2   )η(X )η(Y ) = β{η(X ) + η(Y )} + 2{2β2  +  }g(X, Y )
holds for arbitary X, Y   χ(M ).

So in particular putting  X = Y  = ξ in (4.3), we have β2  +   = 0.  This leads to the following:
Theorem 4.1.  Let (g, ξ, λ) be a Ricci almost soliton structure  on non-regular β-Kenmotsu  manifold

M  with respect to Levi-Civita connection  then the Ricci almost soliton structure is preserved for the Schouten-
van Kampen connection.

Next let (g, ξ, λ) be a Ricci almost soliton on M with respect to Schouten-van Kampen connection.
Then we have

(4.4)                      (£̃ ξ g)(X, Y ) + 2 S~ (X, Y ) + 2λg(X, Y ) = 0.
But from (2.11) we have

(£̃ ξ g)(X, Y ) = 0,
which shows that  the Reeb vector field is Killing. Hence (4.4) implies that

S~ (X, Y ) =  λg(X, Y ).
Thus we can state  the following:

Theorem 4.2.  If (g, ξ, λ)  is a Ricci soliton on a β-Kenmotsu  manifold with respect  to Schouten-van
Kampen  connection,  then  the manifold  is K contact Einstein  with respect to Scouten-van Kampen
connection.
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